MATLAB File Help: prtClassTreeBaggingCap
prtClassTreeBaggingCap
  prtClassTreeBaggingCap  Tree bagging central axis projection classifier
 
     CLASSIFIER = prtClassTreeBaggingCap Tree bagging central axis
     projection classifier.  This classifier is based on the "Random
     Forest" classifier described in 
 
     Breiman, Leo (2001). "Random Forests". Machine Learning 45
 
     CLASSIFIER = prtClassTreeBaggingCap(PROPERTY1, VALUE1, ...) constructs a
     prtClassTreeBaggingCap object CLASSIFIER with properties as specified by
     PROPERTY/VALUE pairs.
 
     A prtClassTreeBaggingCap object inherits all properties from the abstract class
     prtClass. In addition is has the following properties:
 
     nTrees                       - The number of trees
     nFeatures                    - The number of features
 
     featureSelectWithReplacement - Flag indicating whether or not to
                                    do feature selection with 
                                    replacement
 
     bootStrapDataAtRoots         - Flag indicating whether or not
                                    to bootstrap at roots
 
     useMex                       - Flag indicating wheter or not to
                                    use the Mex file for speedup.
 
     fastTraining                 - Flag indicating whether to use
                                    "fast" training.  Fast training
                                    does not necessarily choose the
                                    optimal operating point at each
                                    node, but is much faster, and often
                                    has competetive (or even superior)
                                    cross-validation performance, at
                                    the expense of increased
                                    tree-length.
 
     computePercIncrMisclassRate  - Flag indicating whether or not to
                                    compute percent increase in
                                    misclassification rate
     
 
   For more information on random tree classifiers, see:
    http://en.wikipedia.org/wiki/Random_forest
    http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
 
     A prtClassTreeBaggingCap  object inherits the TRAIN, RUN, 
     CROSSVALIDATE and KFOLDS methods from prtAction. It also inherits 
     the PLOT method from prtClass.
 
     Example:
 
      TestDataSet = prtDataGenUniModal;      % Create some test and
      TrainingDataSet = prtDataGenUniModal;  % training data
      classifier = classifier.train(TrainingDataSet);    % Train
      classified = run(classifier, TestDataSet);         % Test
      classifier.plot;
See also
Class Details
Superclasses prtClass
Sealed false
Construct on load false
Constructor Summary
prtClassTreeBaggingCap Tree bagging central axis projection classifier 
Property Summary
bootStrapDataAtRoots Flag indicating whether or not to boostrap at roots 
computePercIncrMisclassRate Flag indicating whether or not to compute percent increase in misclassification rate 
dataSet The training prtDataSet, only stored if verboseStorage is true.  
dataSetSummary Structure that summarizes prtDataSet. 
fastTraining Whether to truly optimize operating points at each branch (false), or take a rough guess (true) 
featureSelectWithReplacement Flag indicating whether or not to do feature selection with replacement 
internalDecider Optional prtDecider object for making decisions 
isCrossValidateValid True 
isNativeMary False 
isSupervised True 
isTrained Indicates if prtAction object has been trained. 
nFeatures The number of features at each node 
nTrees The number of trees 
name Tree Bagging Central Axis Projection 
nameAbbreviation TBCAP 
percIncrMisclassRate  
root Array of Central Axis Projection Trees 
showProgressBar  
twoClassParadigm Whether the classifier retures one output (binary) or two outputs (m-ary) when there are only two unique class labels 
useMex Flag indicating whether or not to use the Mex file 
userData User specified data 
verboseStorage Specifies whether or not to store the training prtDataset. 
Method Summary
  crossValidate Cross validate prtAction using prtDataSet and cross validation keys. 
  get get the object properties 
  kfolds Perform K-folds cross-validation of prtAction 
  optimize Optimize action parameter by exhaustive function maximization. 
  plot Plot the output confidence of a prtClass object 
  run Run a prtAction object on a prtDataSet object. 
  set set the object properties 
  train Train a prtAction object using training a prtDataSet object.