MATLAB File Help: prtClassRvm
prtClassRvm
  prtClassRvm  Relevance vector machine classifier
 
    CLASSIFIER = prtClassRvm returns a relevance vector machine classifier
 
    CLASSIFIER = prtClassRvm(PROPERTY1, VALUE1, ...) constructs a
    prtClassRvm object CLASSIFIER with properties as specified by
    PROPERTY/VALUE pairs.
 
    A prtClassRvm object inherits all properties from the abstract class
    prtClass. In addition is has the following properties:
 
    kernels                - A cell array of prtKernel objects specifying
                             the kernels to use
    verbosePlot            - Flag indicating whether or not to plot during
                             training
    verboseText            - Flag indicating whether or not to output
                             verbose updates during training
    learningMaxIterations  - The maximum number of iterations
 
    A prtClassRvm also has the following read-only properties:
 
    learningConverged  - Flag indicating if the training converged
    beta               - The regression weights, estimated during training
    sparseBeta         - The sparse regression weights, estimated during
                         training
    sparseKernels      - The sparse regression kernels, estimated during
                         training
 
    For information on relevance vector machines, please
    refer to the following URL:
 
    http://en.wikipedia.org/wiki/Relevance_vector_machine
 
    By default, prtClassRvm uses the Laplacian approximation as found
    in the paper:
 
    Michael E. Tipping. 2001. Sparse bayesian learning and the
    relevance vector machine. J. Mach. Learn. Res. 1 (September 2001),
 
    The code is based on the algorithm in: 
 
    Herbrich, Learning Kernel Classifiers, The MIT Press, 2002
    http://www.learning-kernel-classifiers.org/
 
    A prtClassRvm object inherits the TRAIN, RUN, CROSSVALIDATE and
    KFOLDS methods from prtAction. It also inherits the PLOT method
    from prtClass.
 
    Example:
 
    TestDataSet = prtDataGenUnimodal;      % Create some test and
    TrainingDataSet = prtDataGenUnimodal;  % training data
    classifier = prtClassRvm;              % Create a classifier
    classifier = classifier.train(TrainingDataSet);    % Train
    classified = run(classifier, TestDataSet);         % Test
    % Plot the results
    subplot(2,1,1);
    classifier.plot;
    subplot(2,1,2);
    [pf,pd] = prtScoreRoc(classified,TestDataSet);
    h = plot(pf,pd,'linewidth',3);
    title('ROC'); xlabel('Pf'); ylabel('Pd');
 
    % Example 2, using a different kernel 
 
    TestDataSet = prtDataGenUnimodal;      % Create some test and
    TrainingDataSet = prtDataGenUnimodal;  % training data
    classifier = prtClassRvm;              % Create a classifier
  
    % Create a prtKernelSet object with a different pair of
    % prtKernels and assign them to the classifier
    kernSet = prtKernelDirect & prtKernelRbf;
    classifier.kernels = kernSet;
 
    classifier = classifier.train(TrainingDataSet);    % Train
    classified = run(classifier, TestDataSet);         % Test
    % Plot
    subplot(2,1,1);
    classifier.plot;
    subplot(2,1,2);
    [pf,pd] = prtScoreRoc(classified,TestDataSet);
    h = plot(pf,pd,'linewidth',3);
    title('ROC'); xlabel('Pf'); ylabel('Pd');
See also
Class Details
Superclasses prtClass
Sealed false
Construct on load false
Constructor Summary
prtClassRvm Relevance vector machine classifier 
Property Summary
beta Regression weights 
dataSet The training prtDataSet, only stored if verboseStorage is true.  
dataSetSummary Structure that summarizes prtDataSet. 
internalDecider Optional prtDecider object for making decisions 
isCrossValidateValid True 
isNativeMary False 
isSupervised True 
isTrained Indicates if prtAction object has been trained. 
kernels The kernels to be used 
learningConverged Flag indicating whether or not training convereged 
learningConvergedTolerance Learning tolerance;  
learningMaxIterations The maximum number of iterations 
learningRelevantTolerance Tolerance below which a kernel is marked as irrelevant and removed 
name Relevance Vector Machine 
nameAbbreviation RVM 
showProgressBar  
sparseBeta Sparse Beta 
sparseKernels Sparse Kernel array 
twoClassParadigm Whether the classifier retures one output (binary) or two outputs (m-ary) when there are only two unique class labels 
userData User specified data 
verbosePlot Whether or not to plot during training 
verboseStorage Specifies whether or not to store the training prtDataset. 
verboseText Whether or not to display text during training 
Method Summary
  crossValidate Cross validate prtAction using prtDataSet and cross validation keys. 
  get get the object properties 
  kfolds Perform K-folds cross-validation of prtAction 
  optimize Optimize action parameter by exhaustive function maximization. 
  plot Plot output confidence of the prtClassRvm object 
  run Run a prtAction object on a prtDataSet object. 
  set set the object properties 
  train Train a prtAction object using training a prtDataSet object.