MATLAB File Help: prtClassMap |
prtClassMap Maximum a Posteriori classifier CLASSIFIER = prtClassMap returns a Maximum a Posteriori classifier CLASSIFIER = prtClassMap(PROPERTY1, VALUE1, ...) constructs a prtClassMAP object CLASSIFIER with properties as specified by PROPERTY/VALUE pairs. A prtClassMap object inherits all properties from the abstract class prtClass. In addition is has the following property: rvs - A prtRv object. This property describes the random variable model used for Maximum a Posteriori classification. A prtClassMap object inherits inherits the TRAIN, RUN, CROSSVALIDATE and KFOLDS methods from prtClass. Example: TestDataSet = prtDataGenUnimodal; % Create some test and TrainingDataSet = prtDataGenUnimodal; % training data classifier = prtClassMap; % Create a classifier classifier = classifier.train(TrainingDataSet); % Train classified = run(classifier, TestDataSet); % Test subplot(2,1,1); classifier.plot; % Plot results subplot(2,1,2); prtScoreRoc(classified,TestDataSet); set(get(gca,'Children'), 'LineWidth',3)
Superclasses | prtClass |
Sealed | false |
Construct on load | false |
prtClassMap | Maximum a Posteriori classifier |
dataSet | The training prtDataSet, only stored if verboseStorage is true. |
dataSetSummary | Structure that summarizes prtDataSet. |
internalDecider | Optional prtDecider object for making decisions |
isCrossValidateValid | True |
isNativeMary | True |
isSupervised | True |
isTrained | Indicates if prtAction object has been trained. |
name | Required by prtAction |
nameAbbreviation | MAP |
rvs | Random variable object containing mean and variance |
showProgressBar | |
twoClassParadigm | Whether the classifier retures one output (binary) or two outputs (m-ary) when there are only two unique class labels |
userData | User specified data |
verboseStorage | Specifies whether or not to store the training prtDataset. |
crossValidate | Cross validate prtAction using prtDataSet and cross validation keys. | |
get | get the object properties | |
kfolds | Perform K-folds cross-validation of prtAction | |
optimize | Optimize action parameter by exhaustive function maximization. | |
plot | Plot the output confidence of a prtClass object | |
run | Run a prtAction object on a prtDataSet object. | |
set | set the object properties | |
train | Train a prtAction object using training a prtDataSet object. |