MATLAB File Help: prtClassKmeansPrototypes |
prtClassKmeansPrototypes K-means prototypes classifier CLASSIFIER = prtClassKmeansPrototypes returns a K-means prototypes classifier CLASSIFIER = prtClassKmeansPrototypes(PROPERTY1, VALUE1, ...) constructs a prtClassKmeansPrototypes object CLASSIFIER with properties as specified by PROPERTY/VALUE pairs. A prtClassKmeansPrototypes object inherits all properties from the abstract class prtClass. In addition is has the following properties: nClustersPerHypothesis - The number of clusters per hypothesis clusterCenters - The cluster centers (set during training) For information on the K-means prototype classifier algorithm, please refer to: Hastie, Tibshirani, Friedman, The Elements of Statistical Learning A prtClassKmeansPrototypes object inherits the TRAIN, RUN, CROSSVALIDATE and KFOLDS methods from prtAction. It also inherits the PLOT method from prtClass. Example: TestDataSet = prtDataGenMary; % Create some test and TrainingDataSet = prtDataGenMary; % training data classifier = prtClassKmeansPrototypes; % Create a classifier classifier = classifier.train(TrainingDataSet); % Train classified = run(classifier, TestDataSet); % Test [~, classes] = max(classified.getX,[],2); % Select the % classes percentCorr = prtScorePercentCorrect(classes,TestDataSet.getTargets); classifier.plot;
Superclasses | prtClass |
Sealed | false |
Construct on load | false |
prtClassKmeansPrototypes | Allow for string, value pairs |
clusterCenters | The cluster centers |
dataSet | The training prtDataSet, only stored if verboseStorage is true. |
dataSetSummary | Structure that summarizes prtDataSet. |
internalDecider | Optional prtDecider object for making decisions |
isCrossValidateValid | True |
isNativeMary | True |
isSupervised | True |
isTrained | Indicates if prtAction object has been trained. |
nClustersPerHypothesis | Number of clusters per hypothesis |
name | K-Means Prototypes |
nameAbbreviation | K-MeansProto |
showProgressBar | |
twoClassParadigm | Whether the classifier retures one output (binary) or two outputs (m-ary) when there are only two unique class labels |
userData | User specified data |
verboseStorage | Specifies whether or not to store the training prtDataset. |
crossValidate | Cross validate prtAction using prtDataSet and cross validation keys. | |
get | get the object properties | |
kfolds | Perform K-folds cross-validation of prtAction | |
optimize | Optimize action parameter by exhaustive function maximization. | |
plot | Plot the output confidence of a prtClass object | |
run | Run a prtAction object on a prtDataSet object. | |
set | set the object properties | |
train | Train a prtAction object using training a prtDataSet object. |