MATLAB File Help: prtClassDlrt/prtClassDlrt
prtClassDlrt/prtClassDlrt
  prtClassDlrt  Distance likelihood ratio test classifier
 
     CLASSIFIER = prtClassDlrt returns a Dlrt classifier
 
     CLASSIFIER = prtClassDlrt(PROPERTY1, VALUE1, ...) constructs a
     prtClassDlrt object CLASSIFIER with properties as specified by
     PROPERTY/VALUE pairs.
 
     A prtClassDlrt object inherits all properties from the abstract class
     prtClass. In addition is has the following properties:
 
     k                  - The number of neigbors to be considered
     distanceFunction   - The function to be used to compute the
                          distance from samples to cluster centers. 
                          It must be a function handle of the form:
                          @(x1,x2)distFun(x1,x2). Most prtDistance*
                          functions will work.
 
     For more information on Dlrt classifiers, refer to the
     following paper:
 
     Remus, J.J. et al., "Comparison of a distance-based likelihood ratio
     test and k-nearest neighbor classification methods" Machine Learning
     for Signal Processing, 2008. MLSP 2008. IEEE Workshop on, October,
     2008.
 
     A prtClassDlrt object inherits the TRAIN, RUN, CROSSVALIDATE and
     KFOLDS methods from prtAction. It also inherits the PLOT method
     from prtClass.
 
     Example:
 
      TestDataSet = prtDataGenUniModal;       % Create some test and
      TrainingDataSet = prtDataGenUniModal;   % training data
      classifier = prtClassDlrt;              % Create a classifier
      classifier = classifier.train(TrainingDataSet);    % Train
      classified = run(classifier, TestDataSet);         % Test
      subplot(2,1,1);
      classifier.plot;
      subplot(2,1,2);
      [pf,pd] = prtScoreRoc(classified,TestDataSet);
      h = plot(pf,pd,'linewidth',3);
      title('ROC'); xlabel('Pf'); ylabel('Pd');
See also