| MATLAB File Help: prtClassMap |
prtClassMap Maximum a Posteriori classifier CLASSIFIER = prtClassMap returns a Maximum a Posteriori classifier CLASSIFIER = prtClassMap(PROPERTY1, VALUE1, ...) constructs a prtClassMAP object CLASSIFIER with properties as specified by PROPERTY/VALUE pairs. A prtClassMap object inherits all properties from the abstract class prtClass. In addition is has the following property: rvs - A prtRv object. This property describes the random variable model used for Maximum a Posteriori classification. A prtClassMap object inherits inherits the TRAIN, RUN, CROSSVALIDATE and KFOLDS methods from prtClass. Example: TestDataSet = prtDataGenUnimodal; % Create some test and TrainingDataSet = prtDataGenUnimodal; % training data classifier = prtClassMap; % Create a classifier classifier = classifier.train(TrainingDataSet); % Train classified = run(classifier, TestDataSet); % Test subplot(2,1,1); classifier.plot; % Plot results subplot(2,1,2); prtScoreRoc(classified,TestDataSet); set(get(gca,'Children'), 'LineWidth',3)
| Superclasses | prtClass |
| Sealed | false |
| Construct on load | false |
| prtClassMap | Maximum a Posteriori classifier |
| dataSet | The training prtDataSet, only stored if verboseStorage is true. |
| dataSetSummary | Structure that summarizes prtDataSet. |
| internalDecider | Optional prtDecider object for making decisions |
| isCrossValidateValid | True |
| isNativeMary | True |
| isSupervised | True |
| isTrained | Indicates if prtAction object has been trained. |
| name | Required by prtAction |
| nameAbbreviation | MAP |
| rvs | Random variable object containing mean and variance |
| showProgressBar | |
| twoClassParadigm | Whether the classifier retures one output (binary) or two outputs (m-ary) when there are only two unique class labels |
| userData | User specified data |
| verboseStorage | Specifies whether or not to store the training prtDataset. |
| crossValidate | Cross validate prtAction using prtDataSet and cross validation keys. | |
| get | get the object properties | |
| kfolds | Perform K-folds cross-validation of prtAction | |
| optimize | Optimize action parameter by exhaustive function maximization. | |
| plot | Plot the output confidence of a prtClass object | |
| run | Run a prtAction object on a prtDataSet object. | |
| set | set the object properties | |
| train | Train a prtAction object using training a prtDataSet object. |