| MATLAB File Help: prtRegressLslr |
prtRegresLslr Least squares regression object
REGRESS = prtRegressLslr returns a prtRegressLslr object
REGRESS = prtRegressLslr(PROPERTY1, VALUE1, ...) constructs a
prtRegressGP object REGRESS with properties as specified by
PROPERTY/VALUE pairs.
A prtRegressLslr object inherits all properties from the prtRegress
class. In addition, it has the following properties:
beta - The regression weights
t - A measure of feature importance
rss - The residual sum of squares
standardizedResiduals - The standardized residuals
A prtRegressionLslr object inherits the PLOT method from the
prtRegress object, and the TRAIN, RUN, CROSSVALIDATE and KFOLDS
methods from the prtAction object.
Example:
x = [1:.5:10]'; % Create a linear, noisy data set.
y = 2*x + 3 + randn(size(x));
dataSet = prtDataSetRegress; % Create a prtDataSetRegress object
dataSet= dataSet.setX(x);
dataSet = dataSet.setY(y);
dataSet.plot; % Display data
reg = prtRegressLslr; % Create a prtRegressRvm object
reg = reg.train(dataSet); % Train the prtRegressRvm object
reg.plot(); % Plot the resulting curve
dataSetOut = reg.run(dataSet); % Run the regressor on the data
hold on;
plot(dataSet.getX,dataSetOut.getX,'k*') % Plot, overlaying the
% fitted points with the
% curve and original data
legend('Regression line','Original Points','Fitted points',0)| Superclasses | prtRegress |
| Sealed | false |
| Construct on load | false |
| prtRegressLslr | prtRegresLslr Least squares regression object |
| beta | Regression weights estimated via least squares linear regression |
| dataSet | The training prtDataSet, only stored if verboseStorage is true. |
| dataSetSummary | Structure that summarizes prtDataSet. |
| isCrossValidateValid | True |
| isSupervised | True |
| isTrained | Indicates if prtAction object has been trained. |
| name | Least Squares Linear Regression |
| nameAbbreviation | LSLR |
| plotOptions | Plotting Options |
| rss | Resisudal sum of the squared error |
| showProgressBar | |
| standardizedResiduals | Standardized residuals |
| t | Measuer of the importance of each weight |
| userData | User specified data |
| verboseStorage | Specifies whether or not to store the training prtDataset. |
| crossValidate | Cross validate prtAction using prtDataSet and cross validation keys. | |
| get | get the object properties | |
| kfolds | Perform K-folds cross-validation of prtAction | |
| optimize | Optimize action parameter by exhaustive function maximization. | |
| plot | Plot the prtRegress object | |
| run | Run a prtAction object on a prtDataSet object. | |
| runRegressorOnGrid | ||
| set | set the object properties | |
| train | Train a prtAction object using training a prtDataSet object. |