MATLAB File Help: prtRegressGp
prtRegressGp
  prtRegresGP  Gaussian Process regression object
 
    REGRESS = prtRegressGP returns a prtRegressGP object
 
     REGRESS = prtRegressGP(PROPERTY1, VALUE1, ...) constructs a
     prtRegressGP object REGRESS with properties as specified by
     PROPERTY/VALUE pairs.
  
     A prtRegressGP object inherits all properties from the prtRegress
     class. In addition, it has the following properties:
 
    covarianceFunction = @(x1,x2)prtUtillQuadExpCovariance(x1,x2, 1, 4, 0, 0);
    noiseVariance = 0.01;
    CN ?
    weights?
 
    Need reference 
  
    A prtRegressionGP object inherits the PLOT method from the
    prtRegress object, and the TRAIN, RUN, CROSSVALIDATE and KFOLDS
    methods from the prtAction object.
 
    Example:
    
    dataSet = prtDataGenNoisySinc;           % Load a prtDataRegress
    dataSet.plot;                    % Display data
    reg = prtRegressGP;             % Create a prtRegressRvm object
    reg = reg.train(dataSet);        % Train the prtRegressRvm object
    reg.plot();                      % Plot the resulting curve
    dataSetOut = reg.run(dataSet);   % Run the regressor on the data
    hold on;
    plot(dataSet.getX,dataSetOut.getX,'c.') % Plot, overlaying the
                                            % fitted points with the 
                                            % curve and original data
  legend('Regression curve','Original Points','Fitted points',0)
See also
Class Details
Superclasses prtRegress
Sealed false
Construct on load false
Constructor Summary
prtRegressGp prtRegresGP Gaussian Process regression object 
Property Summary
CN  
covarianceFunction  
dataSet The training prtDataSet, only stored if verboseStorage is true.  
dataSetSummary Structure that summarizes prtDataSet. 
isCrossValidateValid True 
isSupervised True 
isTrained Indicates if prtAction object has been trained. 
name  
nameAbbreviation  
noiseVariance  
plotOptions Plotting Options 
showProgressBar  
userData User specified data 
verboseStorage Specifies whether or not to store the training prtDataset. 
weights  
Method Summary
  crossValidate Cross validate prtAction using prtDataSet and cross validation keys. 
  get get the object properties 
  kfolds Perform K-folds cross-validation of prtAction 
  optimize Optimize action parameter by exhaustive function maximization. 
  plot Plot the prtRegress object 
  prtRegressGP  
  run Run a prtAction object on a prtDataSet object. 
  runRegressorOnGrid  
  set set the object properties 
  setVerboseStorage  
  train Train a prtAction object using training a prtDataSet object.