| MATLAB File Help: prtRegressGp |
prtRegresGP Gaussian Process regression object
REGRESS = prtRegressGP returns a prtRegressGP object
REGRESS = prtRegressGP(PROPERTY1, VALUE1, ...) constructs a
prtRegressGP object REGRESS with properties as specified by
PROPERTY/VALUE pairs.
A prtRegressGP object inherits all properties from the prtRegress
class. In addition, it has the following properties:
covarianceFunction = @(x1,x2)prtUtillQuadExpCovariance(x1,x2, 1, 4, 0, 0);
noiseVariance = 0.01;
CN ?
weights?
Need reference
A prtRegressionGP object inherits the PLOT method from the
prtRegress object, and the TRAIN, RUN, CROSSVALIDATE and KFOLDS
methods from the prtAction object.
Example:
dataSet = prtDataGenNoisySinc; % Load a prtDataRegress
dataSet.plot; % Display data
reg = prtRegressGP; % Create a prtRegressRvm object
reg = reg.train(dataSet); % Train the prtRegressRvm object
reg.plot(); % Plot the resulting curve
dataSetOut = reg.run(dataSet); % Run the regressor on the data
hold on;
plot(dataSet.getX,dataSetOut.getX,'c.') % Plot, overlaying the
% fitted points with the
% curve and original data
legend('Regression curve','Original Points','Fitted points',0)| Superclasses | prtRegress |
| Sealed | false |
| Construct on load | false |
| prtRegressGp | prtRegresGP Gaussian Process regression object |
| CN | |
| covarianceFunction | |
| dataSet | The training prtDataSet, only stored if verboseStorage is true. |
| dataSetSummary | Structure that summarizes prtDataSet. |
| isCrossValidateValid | True |
| isSupervised | True |
| isTrained | Indicates if prtAction object has been trained. |
| name | |
| nameAbbreviation | |
| noiseVariance | |
| plotOptions | Plotting Options |
| showProgressBar | |
| userData | User specified data |
| verboseStorage | Specifies whether or not to store the training prtDataset. |
| weights |
| crossValidate | Cross validate prtAction using prtDataSet and cross validation keys. | |
| get | get the object properties | |
| kfolds | Perform K-folds cross-validation of prtAction | |
| optimize | Optimize action parameter by exhaustive function maximization. | |
| plot | Plot the prtRegress object | |
| prtRegressGP | ||
| run | Run a prtAction object on a prtDataSet object. | |
| runRegressorOnGrid | ||
| set | set the object properties | |
| setVerboseStorage | ||
| train | Train a prtAction object using training a prtDataSet object. |