prtClassMatlabTreeBagger TreeBagger classifier using the MATLAB function "treeBagger.m" (requires statistics toolbox)
CLASSIFIER = prtClassMatlabTreeBagger returns a tree-bagger
classifier build using the MATLAB Statistics toolbox (additonal
product, not included). As an alternative, consider using
prtClassTreeBaggingCap, which also implements a random forest
classification scheme.
A prtClassMatlabTreeBagger object inherits all properties from the
abstract class prtClass. In addition is has the following
properties:
nTrees - The number of trees to use in the MATLAB TreeBagger
treeBaggerParamValuePairs - A cell array of parameter value pairs
to be passed to the MATLAB function "treeBagger". A complete list
of the valid parameters and their allowed values can be found in
the help entru for "treeBagger.m"
% Example usage:
TestDataSet = prtDataGenBimodal; % Create some test and
TrainingDataSet = prtDataGenBimodal; % training data
classifier = prtClassMatlabTreeBagger; % Create a classifier
classifier = classifier.train(TrainingDataSet); % Train
classified = run(classifier, TestDataSet); % Test
subplot(2,1,1);
classifier.plot;
subplot(2,1,2);
[pf,pd] = prtScoreRoc(classified,TestDataSet);
h = plot(pf,pd,'linewidth',3);
title('ROC'); xlabel('Pf'); ylabel('Pd');
% Example usage setting the treeBaggerParamValuePairs cell array:
TestDataSet = prtDataGenBimodal; % Create some test and
TrainingDataSet = prtDataGenBimodal; % training data
classifier = prtClassMatlabTreeBagger('treeBaggerParamValuePairs',{'nVarToSample','all'});
classifier = classifier.train(TrainingDataSet); % Train
classified = run(classifier, TestDataSet); % Test
subplot(2,1,1);
classifier.plot;
subplot(2,1,2);
[pf,pd] = prtScoreRoc(classified,TestDataSet);
h = plot(pf,pd,'linewidth',3);
title('ROC'); xlabel('Pf'); ylabel('Pd');